- ⧉⌕$post array (20)
- ⇄datum => string (10) "01.12.2022"$post['datum']
- ⇄⧉veroeffentlichungsart => array (10)$post['veroeffentlichungsart']
- ⇄term_id => integer 836$post['veroeffentlichungsart']['term_id']
- ⇄name => string (46) "Beitrag zu wissenschaftlicher Konferenz/Tagung"$post['veroeffentlichungsart']['name']
- ⇄slug => string (50) "417_beitrag-zu-wissenschaftlicher-konferenz-tagung"$post['veroeffentlichungsart']['slug']
- ⇄term_group => integer 0$post['veroeffentlichungsart']['term_group']
- ⇄term_taxonomy_id => integer 836$post['veroeffentlichungsart']['term_taxonomy_id']
- ⇄taxonomy => string (21) "veroeffentlichungsart"$post['veroeffentlichungsart']['taxonomy']
- ⇄description => string (0) ""$post['veroeffentlichungsart']['description']
- ⇄parent => integer 0$post['veroeffentlichungsart']['parent']
- ⇄count => integer 198$post['veroeffentlichungsart']['count']
- ⇄filter => string (3) "raw"$post['veroeffentlichungsart']['filter']
- ⇄term_id => integer 836
- ⇄⧉forschungsschwerpunkt => array (10)$post['forschungsschwerpunkt']
- ⇄term_id => integer 903$post['forschungsschwerpunkt']['term_id']
- ⇄name => string (19) "kein FSP zugeordnet"$post['forschungsschwerpunkt']['name']
- ⇄slug => string (23) "557_kein-fsp-zugeordnet"$post['forschungsschwerpunkt']['slug']
- ⇄term_group => integer 0$post['forschungsschwerpunkt']['term_group']
- ⇄term_taxonomy_id => integer 903$post['forschungsschwerpunkt']['term_taxonomy_id']
- ⇄taxonomy => string (21) "forschungsschwerpunkt"$post['forschungsschwerpunkt']['taxonomy']
- ⇄description => string (0) ""$post['forschungsschwerpunkt']['description']
- ⇄parent => integer 0$post['forschungsschwerpunkt']['parent']
- ⇄count => integer 44$post['forschungsschwerpunkt']['count']
- ⇄filter => string (3) "raw"$post['forschungsschwerpunkt']['filter']
- ⇄term_id => integer 903
- ⇄⧉autoren => array (7)$post['autoren']
- Table (7)
- Contents (7)
name link intern personenkennziffer 0 Puneet Mathur false 1 Mihir Goyal false 2 Ramit Sawhney false 3 Ritik Mathur false 4 Jochen Leidner https://www.hs-coburg.de/personen/prof-dr-jochen-leidner/ true 5 Franck Dernoncourt false 6 Dinesh Manocha false - ⇄⧉0 => array (4)$post['autoren'][0]
- ⇄name => string (13) "Puneet Mathur"$post['autoren'][0]['name']
- ⇄link => string (0) ""$post['autoren'][0]['link']
- ⇄intern => boolean false$post['autoren'][0]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][0]['personenkennziffer']
- ⇄name => string (13) "Puneet Mathur"
- ⇄⧉1 => array (4)$post['autoren'][1]
- ⇄name => string (11) "Mihir Goyal"$post['autoren'][1]['name']
- ⇄link => string (0) ""$post['autoren'][1]['link']
- ⇄intern => boolean false$post['autoren'][1]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][1]['personenkennziffer']
- ⇄name => string (11) "Mihir Goyal"
- ⇄⧉2 => array (4)$post['autoren'][2]
- ⇄name => string (13) "Ramit Sawhney"$post['autoren'][2]['name']
- ⇄link => string (0) ""$post['autoren'][2]['link']
- ⇄intern => boolean false$post['autoren'][2]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][2]['personenkennziffer']
- ⇄name => string (13) "Ramit Sawhney"
- ⇄⧉3 => array (4)$post['autoren'][3]
- ⇄name => string (12) "Ritik Mathur"$post['autoren'][3]['name']
- ⇄link => string (0) ""$post['autoren'][3]['link']
- ⇄intern => boolean false$post['autoren'][3]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][3]['personenkennziffer']
- ⇄name => string (12) "Ritik Mathur"
- ⇄⧉4 => array (4)$post['autoren'][4]
- ⇄name => string (14) "Jochen Leidner"$post['autoren'][4]['name']
- ⇄link => string (57) "https://www.hs-coburg.de/personen/prof-dr-jochen-leidner/"$post['autoren'][4]['link']
- ⇄intern => boolean true$post['autoren'][4]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][4]['personenkennziffer']
- ⇄name => string (14) "Jochen Leidner"
- ⇄⧉5 => array (4)$post['autoren'][5]
- ⇄name => string (18) "Franck Dernoncourt"$post['autoren'][5]['name']
- ⇄link => string (0) ""$post['autoren'][5]['link']
- ⇄intern => boolean false$post['autoren'][5]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][5]['personenkennziffer']
- ⇄name => string (18) "Franck Dernoncourt"
- ⇄⧉6 => array (4)$post['autoren'][6]
- ⇄name => string (14) "Dinesh Manocha"$post['autoren'][6]['name']
- ⇄link => string (0) ""$post['autoren'][6]['link']
- ⇄intern => boolean false$post['autoren'][6]['intern']
- ⇄personenkennziffer => string (0) ""$post['autoren'][6]['personenkennziffer']
- ⇄name => string (14) "Dinesh Manocha"
- ⇄⧉0 => array (4)
- ⇄⧉titel => string (91) "DocFin: Multimodal Financial Prediction and Bias Mitigation using Semi-struc...$post['titel']
DocFin: Multimodal Financial Prediction and Bias Mitigation using Semi-structured Documents
- ⇄⧉medien => string (168) "Findings of the Association for Computational Linguistics: EMNLP 2022 (Empir...$post['medien']
Findings of the Association for Computational Linguistics: EMNLP 2022 (Empirical Methods in Natural Language Processing), December 2022, Abu Dhabi, United Arab Emirates
- ⇄doi => string (0) ""$post['doi']
- ⇄weblink => string (48) "https://aclanthology.org/2022.findings-emnlp.139"$post['weblink']
- ⇄⧉abstract => string (1079) "<p>Financial prediction is complex due to the stochastic nature of the stock...$post['abstract']
<p>Financial prediction is complex due to the stochastic nature of the stock market. Semi-structured financial documents present comprehensive financial data in tabular formats, such as earnings, profit-loss statements, and balance sheets, and can often contain rich technical analysis along with a textual discussion of corporate history, and management analysis, compliance, and risks. Existing research focuses on the textual and audio modalities of financial disclosures from company conference calls to forecast stock volatility and price movement, but ignores the rich tabular data available in financial reports. Moreover, the economic realm is still plagued with a severe under-representation of various communities spanning diverse demographics, gender, and native speakers. In this work, we show that combining tabular data from financial semi-structured documents with text transcripts and audio recordings not only improves stock volatility and price movement prediction by 5-12% but also reduces gender bias caused due to audio-based neural networks by over 30%.</p>
- ⇄heft => string (0) ""$post['heft']
- ⇄band => string (0) ""$post['band']
- ⇄artikelnummer => string (0) ""$post['artikelnummer']
- ⇄isbn => string (0) ""$post['isbn']
- ⇄herausgeber => string (41) "Association for Computational Linguistics"$post['herausgeber']
- ⇄seiten => string (9) "1933-1940"$post['seiten']
- ⇄open_access => null$post['open_access']
- ⇄peer_reviewed => boolean true$post['peer_reviewed']
- ⇄detailseite => boolean true$post['detailseite']
- ⇄⧉zitierung => string (402) "Mathur, Puneet; Goyal, Mihir; Sawhney, Ramit; Mathur, Ritik; Leidner, Jochen...$post['zitierung']
Mathur, Puneet; Goyal, Mihir; Sawhney, Ramit; Mathur, Ritik; Leidner, Jochen L.; Dernoncourt, Franck; Manocha, Dinesh (2022): DocFin: Multimodal Financial Prediction and Bias Mitigation using Semi-structured Documents. Findings of the Association for Computational Linguistics: EMNLP 2022 (Empirical Methods in Natural Language Processing), December 2022, Abu Dhabi, United Arab Emirates, S. 1933-1940.
- ⇄⧉permalink => string (133) "https://www.hs-coburg.de/publikation/3569-docfin-multimodal-financial-predic...$post['permalink']
https://www.hs-coburg.de/publikation/3569-docfin-multimodal-financial-prediction-and-bias-mitigation-using-semi-structured-documents/
- ⇄datum => string (10) "01.12.2022"
DocFin: Multimodal Financial Prediction and Bias Mitigation using Semi-structured Documents
Financial prediction is complex due to the stochastic nature of the stock market. Semi-structured financial documents present comprehensive financial data in tabular formats, such as earnings, profit-loss statements, and balance sheets, and can often contain rich technical analysis along with a textual discussion of corporate history, and management analysis, compliance, and risks. Existing research focuses on the textual and audio modalities of financial disclosures from company conference calls to forecast stock volatility and price movement, but ignores the rich tabular data available in financial reports. Moreover, the economic realm is still plagued with a severe under-representation of various communities spanning diverse demographics, gender, and native speakers. In this work, we show that combining tabular data from financial semi-structured documents with text transcripts and audio recordings not only improves stock volatility and price movement prediction by 5-12% but also reduces gender bias caused due to audio-based neural networks by over 30%.
Titel:
Veröffentlichungsdatum:
Publikationsart:
Forschungsschwerpunkt:
Medien:
DOI:
Weblink:
Heft:
Band:
Artikelnummer:
ISBN:
Autoren:
Puneet Mathur, Mihir Goyal, Ramit Sawhney, Ritik Mathur, Jochen Leidner, Franck Dernoncourt, Dinesh Manocha
Medien:
Herausgeber:
Seiten:
Open Access:
Peer reviewed:
Zitierung: