$post array (20)
datum => string (10) "18.05.2023"
$post['datum']
veroeffentlichungsart => array (10)
$post['veroeffentlichungsart']
term_id => integer 838
$post['veroeffentlichungsart']['term_id']
name => UTF-8 string (22) "Zeitschriftenbeiträge"
$post['veroeffentlichungsart']['name']
slug => string (26) "246_zeitschriftenbeitraege"
$post['veroeffentlichungsart']['slug']
term_group => integer 0
$post['veroeffentlichungsart']['term_group']
term_taxonomy_id => integer 838
$post['veroeffentlichungsart']['term_taxonomy_id']
taxonomy => string (21) "veroeffentlichungsart"
$post['veroeffentlichungsart']['taxonomy']
description => string (0) ""
$post['veroeffentlichungsart']['description']
parent => integer 0
$post['veroeffentlichungsart']['parent']
count => integer 444
$post['veroeffentlichungsart']['count']
filter => string (3) "raw"
$post['veroeffentlichungsart']['filter']
forschungsschwerpunkt => array (10)
$post['forschungsschwerpunkt']
term_id => integer 897
$post['forschungsschwerpunkt']['term_id']
name => UTF-8 string (51) "HRK Schwerpunkt Gesundheit analysieren und fördern"
$post['forschungsschwerpunkt']['name']
slug => string (55) "157_hrk-schwerpunkt-gesundheit-analysieren-und-foerdern"
$post['forschungsschwerpunkt']['slug']
term_group => integer 0
$post['forschungsschwerpunkt']['term_group']
term_taxonomy_id => integer 897
$post['forschungsschwerpunkt']['term_taxonomy_id']
taxonomy => string (21) "forschungsschwerpunkt"
$post['forschungsschwerpunkt']['taxonomy']
description => string (0) ""
$post['forschungsschwerpunkt']['description']
parent => integer 0
$post['forschungsschwerpunkt']['parent']
count => integer 83
$post['forschungsschwerpunkt']['count']
filter => string (3) "raw"
$post['forschungsschwerpunkt']['filter']
autoren => array (17)
$post['autoren']
  • Table (17)
  • Contents (17)
  • namelinkinternpersonenkennziffer
    0Lisa Schneiderfalse
    1Roman Rischkehttps://www.hs-coburg.de/personen/prof-dr-roman-rischke/true
    2Joachim Kroisfalse
    3Aleksander Krasowskifalse
    4Martha Büttnerfalse
    5Hossein Mohammad-Rahimifalse
    6Akhilanand Chaurasiafalse
    7Nielsen S. Pereirafalse
    8Jae-Hong Leefalse
    9Sergio E. Uribefalse
    10Shahriar Shahabfalse
    11Revan B. Koca-Ünsalfalse
    12Gürkan Ünsalfalse
    13Yolanda Martinez-Beneytofalse
    14Janet Brinzfalse
    15Olga Tryfonosfalse
    16Falk Schwendickefalse
  • 0 => array (4)
    $post['autoren'][0]
    name => string (14) "Lisa Schneider"
    $post['autoren'][0]['name']
    link => string (0) ""
    $post['autoren'][0]['link']
    intern => boolean false
    $post['autoren'][0]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][0]['personenkennziffer']
    1 => array (4)
    $post['autoren'][1]
    name => string (13) "Roman Rischke"
    $post['autoren'][1]['name']
    link => string (56) "https://www.hs-coburg.de/personen/prof-dr-roman-rischke/"
    $post['autoren'][1]['link']
    intern => boolean true
    $post['autoren'][1]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][1]['personenkennziffer']
    2 => array (4)
    $post['autoren'][2]
    name => string (13) "Joachim Krois"
    $post['autoren'][2]['name']
    link => string (0) ""
    $post['autoren'][2]['link']
    intern => boolean false
    $post['autoren'][2]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][2]['personenkennziffer']
    3 => array (4)
    $post['autoren'][3]
    name => string (20) "Aleksander Krasowski"
    $post['autoren'][3]['name']
    link => string (0) ""
    $post['autoren'][3]['link']
    intern => boolean false
    $post['autoren'][3]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][3]['personenkennziffer']
    4 => array (4)
    $post['autoren'][4]
    name => UTF-8 string (15) "Martha Büttner"
    $post['autoren'][4]['name']
    link => string (0) ""
    $post['autoren'][4]['link']
    intern => boolean false
    $post['autoren'][4]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][4]['personenkennziffer']
    5 => array (4)
    $post['autoren'][5]
    name => string (23) "Hossein Mohammad-Rahimi"
    $post['autoren'][5]['name']
    link => string (0) ""
    $post['autoren'][5]['link']
    intern => boolean false
    $post['autoren'][5]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][5]['personenkennziffer']
    6 => array (4)
    $post['autoren'][6]
    name => string (20) "Akhilanand Chaurasia"
    $post['autoren'][6]['name']
    link => string (0) ""
    $post['autoren'][6]['link']
    intern => boolean false
    $post['autoren'][6]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][6]['personenkennziffer']
    7 => array (4)
    $post['autoren'][7]
    name => string (18) "Nielsen S. Pereira"
    $post['autoren'][7]['name']
    link => string (0) ""
    $post['autoren'][7]['link']
    intern => boolean false
    $post['autoren'][7]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][7]['personenkennziffer']
    8 => array (4)
    $post['autoren'][8]
    name => string (12) "Jae-Hong Lee"
    $post['autoren'][8]['name']
    link => string (0) ""
    $post['autoren'][8]['link']
    intern => boolean false
    $post['autoren'][8]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][8]['personenkennziffer']
    9 => array (4)
    $post['autoren'][9]
    name => string (15) "Sergio E. Uribe"
    $post['autoren'][9]['name']
    link => string (0) ""
    $post['autoren'][9]['link']
    intern => boolean false
    $post['autoren'][9]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][9]['personenkennziffer']
    10 => array (4)
    $post['autoren'][10]
    name => string (15) "Shahriar Shahab"
    $post['autoren'][10]['name']
    link => string (0) ""
    $post['autoren'][10]['link']
    intern => boolean false
    $post['autoren'][10]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][10]['personenkennziffer']
    11 => array (4)
    $post['autoren'][11]
    name => UTF-8 string (20) "Revan B. Koca-Ünsal"
    $post['autoren'][11]['name']
    link => string (0) ""
    $post['autoren'][11]['link']
    intern => boolean false
    $post['autoren'][11]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][11]['personenkennziffer']
    12 => array (4)
    $post['autoren'][12]
    name => UTF-8 string (14) "Gürkan Ünsal"
    $post['autoren'][12]['name']
    link => string (0) ""
    $post['autoren'][12]['link']
    intern => boolean false
    $post['autoren'][12]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][12]['personenkennziffer']
    13 => array (4)
    $post['autoren'][13]
    name => string (24) "Yolanda Martinez-Beneyto"
    $post['autoren'][13]['name']
    link => string (0) ""
    $post['autoren'][13]['link']
    intern => boolean false
    $post['autoren'][13]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][13]['personenkennziffer']
    14 => array (4)
    $post['autoren'][14]
    name => string (11) "Janet Brinz"
    $post['autoren'][14]['name']
    link => string (0) ""
    $post['autoren'][14]['link']
    intern => boolean false
    $post['autoren'][14]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][14]['personenkennziffer']
    15 => array (4)
    $post['autoren'][15]
    name => string (13) "Olga Tryfonos"
    $post['autoren'][15]['name']
    link => string (0) ""
    $post['autoren'][15]['link']
    intern => boolean false
    $post['autoren'][15]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][15]['personenkennziffer']
    16 => array (4)
    $post['autoren'][16]
    name => string (16) "Falk Schwendicke"
    $post['autoren'][16]['name']
    link => string (0) ""
    $post['autoren'][16]['link']
    intern => boolean false
    $post['autoren'][16]['intern']
    personenkennziffer => string (0) ""
    $post['autoren'][16]['personenkennziffer']
titel => string (90) "Federated vs local vs central deep learning of tooth segmentation on panoram...
$post['titel']
Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs
medien => string (26) "Journal of Dental Research"
$post['medien']
doi => string (43) "https://doi.org/10.1016/j.jdent.2023.104556"
$post['doi']
weblink => string (0) ""
$post['weblink']
abstract => string (1876) "<p><b>Objective</b><br>Federated Learning (FL) enables collaborative trainin...
$post['abstract']
<p><b>Objective</b><br>Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs.<br><b>Methods</b><br>We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers.<br><b>Results</b><br>For 8 out of 9 centers, FL outperformed LL with statistical significance (p&lt;0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability.<br>Conclusion<br>If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high.<br><b>Clinical Significance</b><br>This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.<br></p>
heft => string (0) ""
$post['heft']
band => string (8) "2023/135"
$post['band']
artikelnummer => string (6) "104556"
$post['artikelnummer']
isbn => string (0) ""
$post['isbn']
herausgeber => string (0) ""
$post['herausgeber']
seiten => string (0) ""
$post['seiten']
open_access => null
$post['open_access']
peer_reviewed => boolean true
$post['peer_reviewed']
detailseite => boolean false
$post['detailseite']
zitierung => UTF-8 string (503) "Schneider, Lisa; Rischke, Roman; Krois, Joachim; Krasowski, Aleksander; Bütt...
$post['zitierung']
Schneider, Lisa; Rischke, Roman; Krois, Joachim; Krasowski, Aleksander; Büttner, Martha; Mohammad-Rahimi, Hossein; Chaurasia, Akhilanand; Pereira, Nielsen S.; Lee, Jae-Hong; Uribe, Sergio E.; Shahab, Shahriar; Koca-Ünsal, Revan B.; Ünsal, Gürkan; Martinez-Beneyto, Yolanda; Brinz, Janet; Tryfonos, Olga; Schwendicke, Falk (2023): Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs. Journal of Dental Research 2023/135, 104556. DOI: 10.1016/j.jdent.2023.104556
permalink => string (133) "https://www.hs-coburg.de/publikation/4199-federated-vs-local-vs-central-deep...
$post['permalink']
https://www.hs-coburg.de/publikation/4199-federated-vs-local-vs-central-deep-learning-of-tooth-segmentation-on-panoramic-radiographs/
Called from <ROOT>/wp-content/themes/Avada-Child-Theme/inc/bayfis-content.php:57 [d()]
  1. <ROOT>/wp-includes/shortcodes.php:434 [render_acf_publikation_content()]
  2. <ROOT>/wp-includes/shortcodes.php:273 [preg_replace_callback()]
  3. <ROOT>/wp-content/plugins/fusion-builder/shortcodes/fusion-code-block.php:45 [do_shortcode()]
  4. <ROOT>/wp-includes/shortcodes.php:434 [FusionSC_Code_Block->render()]
  5. <ROOT>/wp-includes/shortcodes.php:273 [preg_replace_callback()]
  6. <ROOT>/wp-content/plugins/fusion-builder/inc/class-fusion-column-element.php:588 [do_shortcode()]
  7. <ROOT>/wp-includes/shortcodes.php:434 [Fusion_Column_Element->render()]
  8. <ROOT>/wp-includes/shortcodes.php:273 [preg_replace_callback()]
  9. <ROOT>/wp-content/plugins/fusion-builder/inc/class-fusion-row-element.php:123 [do_shortcode()]
  10. <ROOT>/wp-includes/shortcodes.php:434 [Fusion_Row_Element->render()]
  11. <ROOT>/wp-includes/shortcodes.php:273 [preg_replace_callback()]
  12. <ROOT>/wp-content/plugins/fusion-builder/shortcodes/fusion-container.php:1095 [do_shortcode()]
  13. <ROOT>/wp-includes/shortcodes.php:434 [FusionSC_Container->render()]
  14. <ROOT>/wp-includes/shortcodes.php:273 [preg_replace_callback()]
  15. <ROOT>/wp-includes/class-wp-hook.php:324 [do_shortcode()]
  16. <ROOT>/wp-includes/plugin.php:205 [WP_Hook->apply_filters()]
  17. <ROOT>/wp-content/plugins/fusion-builder/inc/class-fusion-template-builder.php:1554 [apply_filters()]
  18. <ROOT>/wp-content/plugins/fusion-builder/inc/class-fusion-template-builder.php:1186 [Fusion_Template_Builder->render_content()]
  19. <ROOT>/wp-includes/class-wp-hook.php:324 [Fusion_Template_Builder->render_content_override()]
  20. <ROOT>/wp-includes/class-wp-hook.php:348 [WP_Hook->apply_filters()]
  21. <ROOT>/wp-includes/plugin.php:517 [WP_Hook->do_action()]
  22. <ROOT>/wp-content/plugins/fusion-builder/templates/template-page.php:23 [do_action()]
  23. <ROOT>/wp-includes/template-loader.php:106
  24. <ROOT>/wp-blog-header.php:18
  25. <ROOT>/index.php:30

The website of Coburg University of Applied Sciences was translated using translation software provided by a third-party provider such as DeepL. The official text is the German version of the website. No liability is assumed, either explicitly or implicitly, for the accuracy, reliability, or correctness of the translations into another language.

Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs

Objective
Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs.
Methods
We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers.
Results
For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability.
Conclusion
If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high.
Clinical Significance
This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.

Titel:

Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs

Veröffentlichungsdatum:

18.05.2023

Publikationsart:

Zeitschriftenbeiträge

Forschungsschwerpunkt:

HRK Schwerpunkt Gesundheit analysieren und fördern

Medien:

Journal of Dental Research

DOI:

Weblink:

Heft:

Band:

2023/135

Artikelnummer:

104556

ISBN:

Autoren:

Lisa Schneider, Roman Rischke, Joachim Krois, Aleksander Krasowski, Martha Büttner, Hossein Mohammad-Rahimi, Akhilanand Chaurasia, Nielsen S. Pereira, Jae-Hong Lee, Sergio E. Uribe, Shahriar Shahab, Revan B. Koca-Ünsal, Gürkan Ünsal, Yolanda Martinez-Beneyto, Janet Brinz, Olga Tryfonos, Falk Schwendicke

Medien:

Journal of Dental Research

Herausgeber:

Seiten:

Open Access:

Peer reviewed:

Ja

Zitierung:

Schneider, Lisa; Rischke, Roman; Krois, Joachim; Krasowski, Aleksander; Büttner, Martha; Mohammad-Rahimi, Hossein; Chaurasia, Akhilanand; Pereira, Nielsen S.; Lee, Jae-Hong; Uribe, Sergio E.; Shahab, Shahriar; Koca-Ünsal, Revan B.; Ünsal, Gürkan; Martinez-Beneyto, Yolanda; Brinz, Janet; Tryfonos, Olga; Schwendicke, Falk (2023): Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs. Journal of Dental Research 2023/135, 104556. DOI: 10.1016/j.jdent.2023.104556

Autoren:

Lisa Schneider, Roman Rischke, Joachim Krois, Aleksander Krasowski, Martha Büttner, Hossein Mohammad-Rahimi, Akhilanand Chaurasia, Nielsen S. Pereira, Jae-Hong Lee, Sergio E. Uribe, Shahriar Shahab, Revan B. Koca-Ünsal, Gürkan Ünsal, Yolanda Martinez-Beneyto, Janet Brinz, Olga Tryfonos, Falk Schwendicke